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Abstract
We predicted a new layer compound Nb4SiC3 using the first-principles method. The structural
stability, mechanical, electronic, theoretical hardness and optical properties of Nb4SiC3 were
investigated. A stable Nb4SiC3 phase appears in the α-type crystal structure. Moreover, the
predicted Nb4SiC3 is a metal and exhibits covalent nature. Nb4SiC3 has a theoretical hardness
of 10.86 GPa, which is much higher than Nb4AlC3; at the same time, it is more ductile than
Nb4AlC3. The strong covalent bonding in Nb4SiC3 is responsible for its high bulk modulus
and hardness. Nb4SiC3 exhibits slightly anisotropic elasticity. Furthermore, its optical
properties are also analysed in detail. It is shown that Nb4SiC3 might be a better candidate
material as a coating to avoid solar heating than Ti4AlN3.

1. Introduction

Layered ternary compounds, Mn+1AXn (where M is an early
transition metal, A is an A group element, X is C or N and
n = 1–3), have received tremendous attention due to their
extraordinary mechanical, physical and chemical properties
[1]. The layered structure of these compounds results in their
unique combination of metallic and ceramic properties, such
as high bulk modulus, high melting point, low density, damage
tolerance, microscale ductility at room temperature and
resistance to thermal shock and high-temperature oxidation
[1–4].

Up to now, more than 50 M2AX compounds, five
M3AX2 compounds (Ti3SiC2, Ti3GeC2, Ti3AlC2, Ti3SnC2

and Ta3AlC2) and six M4AX3 compounds (Ti4AlN3, Ti4SiC3,
Ti4GeC3, Ta4AlC3, Nb4AlC3 and V4AlC3) have been
synthesized. Previous studies on M4AX3 compounds focused
mainly on phase stability, electronic structure, chemical
bonding, mechanical and optical properties [5–12]. Recently,
Nb4AlC3 was synthesized by annealing Nb2AlC at 1700 ◦C.
Nb4AlC3 possessed a low hardness, high fracture toughness
and excellent mechanical properties at high temperatures;
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at the same time, it may display quasi-ductility [13–15].
Although Nb4AlC3 has these excellent properties, there may
be other compounds with superior properties that remain to be
discovered. For example, Nb4AlC3 has a low hardness due to
the weakness of Nb–Al bonds, and therefore it is likely that the
combination of Nb and other atoms will give a new M4AX3

compound with a high hardness.
In this paper, we proposed a new layer compound Nb4SiC3

and predicted its properties, such as mechanical, electronic
and optical properties. We found that Nb4SiC3 has better
mechanical and optical properties than Nb4AlC3 and Ti4AlN3.

2. Computational details

The calculations were performed using the CASTEP code
based on density functional theory with the generalized
gradient approximation (GGA) in the scheme of Perdew–
Burke–Ernzerhof [16]. The ion–electron interaction was
modelled by ultrasoft Vanderbilt-type pseudopotentials [17].
The elastic constants were calculated by the ‘stress–strain’
method. Mulliken charges were calculated according to
the formalism described by Segall et al [18]. A plane-
wave cutoff energy of 450 eV was employed throughout
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the calculation. Geometry optimization was achieved using
convergence thresholds of 1×10−5 eV atom−1 for total energy,
0.03 eV Å−1 for maximum force and 0.001 Å for displacement.
The tolerance in the self-consistent field (SCF) calculation is
1 × 10−6 eV atom−1. For the sampling of the Brillouin zone,
the electronic structures and optical properties used 12×12×4
and 14 × 14 × 4 k-point grids generated according to the
Monkhorst–Pack scheme [19], respectively.

The optical properties of Nb4SiC3 are investigated by the
frequency-dependent dielectric function ε(ω) = ε1(ω)+ιε2(ω)

which is mainly connected with the electronic structures.
The imaginary part ε2(ω) of the dielectric function ε(ω) is
calculated from the momentum matrix elements between the
occupied and the unoccupied electronic states and given by

ε2(ω) = 2e2π

�ε0

∑
k,v,c

|〈ψc
k |û · r|ψv

k 〉|2δ(Ec
k − Ev

k − E),

where ω is the light frequency, e is the electronic charge and ψc
k

and ψv
k are the conduction and valence band wave functions

at k, respectively. The real part ε1(ω) is derived from the
imaginary part ε2(ω) by the Kramers–Kronig transformation.
All other optical constants, such as the absorption spectrum, the
energy-loss spectrum and reflectivity, are derived from ε1(ω)

and ε2(ω) [20].

3. Results and discussions

3.1. Structural and elastic properties

Nb4AlC3 has two types of crystal structures [14]: the α-type
has an atom arrangement of ABABACBCBC, while the β-type
has an atom arrangement of ABABABABAB. The structural
parameters of α- and β-type Nb4AlC3 are presented in table 1.
The structures of α- and β-type Nb4SiC3 were constructed by
substituting the Al atoms with the Si atoms in the two types
of crystal structures of Nb4AlC3, respectively. The predicted
lattice parameters and atom positions of the different Nb4SiC3

phases are also displayed in table 1. Density functional theory

Table 1. Predicted lattice parameters (Å), atomic positions, elastic constants Cij (GPa), bulk modulus B (GPa), shear modulus G (GPa),
Young’s moduli E (GPa) and shear-modulus-to-bulk-modulus ratio (G/B) of Nb4SiC3.

α-Nb4SiC3 β-Nb4SiC3 α-Nb4AlCa
3 β-Nb4AlCa

3

Space group P 63/mmc P 63/mmc P 63/mmc P 63/mmc
Lattice constants a = 3.1819 a = 3.1326 a = 3.1296 a = 3.1128

c = 22.9877 c = 23.6468 c = 24.1208 c = 24.7089
Atomic position

Nb1 (1/3, 2/3, 0.0574) (1/3, 2/3, 0.05655) (1/3, 2/3, 0.0553) (1/3, 2/3, 0.05449)
Nb2 (0, 0, 0.16408) (1/3, 2/3, 0.6646) (0, 0, 0.1574) (1/3, 2/3, 0.6581)
Si/Al (1/3, 2/3, 1/4) (1/3, 2/3, 1/4) (1/3, 2/3, 1/4) (1/3, 2/3, 1/4)
C1 (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0)
C2 (2/3,1/3, 0.113 07) (0, 0, 0.113 97) (2/3, 1/3, 0.1086) (0, 0, 0.109 99)

C11, C33, C44 403, 374, 195 413, 328, 161
C12, C13 167, 165 124, 135
G 142 144
B 241 214
E Ex = 303, Ez = 278 Ex = 344, Ez = 260
G/B 0.59 0.67

a Reference [14].

with GGA usually overestimates the lattice parameters and
underestimates the bulk moduli [21]. We also calculated
the total energies of the different Nb4SiC3 phases. The
total energy (−13 567.32 eV) of α-Nb4SiC3 is lower than that
(−13 566.41 eV) of β-Nb4SiC3. Therefore, a stable Nb4SiC3

phase appears in the α-type crystal structure, which is the same
as Nb4AlC3. In the following investigation, we focus mainly
on the properties of α-Nb4SiC3.

In order to study the mechanical properties of α-Nb4SiC3,
we calculated its elastic constants, bulk modulus B, shear
modulus G and Young’s moduli E. The results are shown
in table 1, together with the theoretical results of α-Nb4AlC3

for comparison. The C11 of α-Nb4SiC3 is 11 GPa smaller
than that of α-Nb4AlC3, and this leads to the lower resistances
against the principal strain ε11. However, the C33 of α-Nb4SiC3

is 46 GPa larger than that of α-Nb4AlC3, and this leads to
higher resistances against the principal strain ε33. The C44 of
α-Nb4SiC3 is 34 GPa larger than that of α-Nb4AlC3, thereby
higher resistances to basal and prismatic shear deformations.
The bulk modulus B of α-Nb4SiC3 is higher than that of
α-Nb4AlC3, and this leads to a higher resistance to the volume
change. The shear modulus G of α-Nb4SiC3 is very close
to that of α-Nb4AlC3. Therefore, α-Nb4SiC3 has the same
resistance to the shape change as α-Nb4AlC3. In order
to evaluate the elastic anisotropy of the material, we also
calculated the ratio between linear compressibility coefficients
kc/ka . For hexagonal crystals, kc/ka can be expressed as
kc/ka = (C11 + C12 − 2C13)/(C33 − C13). The kc/ka value
of α-Nb4SiC3 is equal to 1.15, and therefore it has a slight
anisotropy on elasticity.

On the other hand, the elastic constants of α-Nb4SiC3 can
satisfy the well-known Born stability criteria [22]:

C11 > 0, C11 − C12 > 0, C44 > 0,

(C11 + C12)C33 − 2C2
13 > 0.

It is known that α-Nb4SiC3 is mechanically stable under
elastic strain perturbations. The ductility of a material can
be roughly estimated by the value of shear-modulus-to-bulk-
modulus ratios (G/B) [23–27]. A low (high) G/B value
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Figure 1. Energy band structure of α-Nb4SiC3.

Figure 2. Total and partial DOS of α-Nb4SiC3.

shows ductility (brittleness). The G/B value of α-Nb4SiC3 is
lower than that of α-Nb4AlC3. Therefore, α-Nb4SiC3 is more
ductile than α-Nb4AlC3 and exhibits a high shear deformation
resistance.

3.2. Electronic properties and theoretical hardness

The energy band structure and densities of states (DOSs) of
α-Nb4SiC3 are shown in figures 1 and 2, respectively. The
energy band structure is calculated along the high-symmetry
directions in the Brillouin zone. There are many bands crossing

Table 2. Calculated Mulliken bond overlap population P µ, bond
length dµ (Å) and Vickers hardness Hvcalc (GPa) of α-Nb4SiC3.

Bond dµ P µ P µ′
ν

µ

b Hµ
v Hvcalc

C–Nb 2.179 0.99 0.021 9.882 15.76 10.86
2.239 1.00 0.021 10.72 13.9
2.262 1.00 0.021 11.054 13.21

Si–Nb 2.697 0.88 0.021 18.736 4.81

the Fermi level, suggesting that Nb4SiC3 is a metal. The
lowest energy bands from −13 to −10 eV are dominated by the
hybridized Nb 4d and C 2s states. The energy bands between
−10 and −7.5 eV consist mainly of Si 3p states, with little
contribution from its 3s states. The energy bands between−7.5
and −0.76 eV are dominated by the hybridized Nb 4d/Si 3s
and C 2p states. Therefore, Nb4SiC3 appears to have covalent
nature. Moreover, the peaks of Si 3s are weaker than those of
the Nb 4d and C 2p states. The number of peaks was also less
than those of Nb and C. Furthermore, the hybridized Nb 4d
and C 2s states appear in a lower energy range. These results
indicate that the Nb–C bond is stronger than the Nb–Si bond.
In addition, the energy bands near and above the Fermi level
are attributed to Nb 4d states and antibonding states.

We also performed the Mulliken bond populations in
order to understand the bonding behaviour of Nb4SiC3 and
obtain its theoretical Vickers hardness. The theoretical
hardness of crystals with metallic bonding can be calculated
as follows [28, 29]:

Hv =
[

µ∏
(Hµ

v )n
µ

]1/
∑

nµ

Hµ
v (GPa) = 740(P µ − P µ′

)(ν
µ

b )−5/3,

where P µ is the Mulliken population of the µ-type bond, P µ′
is

the metallic population of the µ-type bond and ν
µ

b is the volume
of a bond of type µ. The calculated results are shown in
table 2. The bond populations indicate the overlap degree of
the electron cloud of two bonding atoms. Its highest and lowest
values imply that the chemical bond exhibits strong covalency
and ionicity, respectively. It can be seen that the C–Nb bonds
possessed stronger covalent bonding than the Si–Nb bonds.
The results are consistent with our DOS calculation. Moreover,
the hardness of Nb4SiC3 (10.86 GPa) is higher than Nb4AlC3

(2.6 GPa) [15]. The strong covalent bonding in Nb4SiC3 is
responsible for its high bulk modulus and hardness.

3.3. Optical properties

The calculated results on the dielectric function, the absorption
spectrum, conductivity and the energy-loss spectrum are
shown in figures 3(a)–(d), respectively. In our calculation, we
used a 0.5 eV Gaussian smearing. The imaginary part ε2(ω)

of the dielectric function is very large below 3 eV, which is due
to transitions within the Nb 4d bands, and the ε2(ω) spectrum
above 3 eV arises from Si/C p → Nb d electronic transitions.
The large negative value of ε1(ω) indicates that the Nb4SiC3

crystal has a Drude-like behaviour. The absorption spectrum
rises sharply below 8.38 eV and presents three peaks between
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Figure 3. Optical constants ofα-Nb4SiC3. (a) Imaginary part ε2(ω)
and real part ε1(ω) of the dielectric function ε(ω), (b) absorption
spectrum, (c) photoconductivity and (d) energy-loss spectrum.

9 and 14 eV, and then decreases rapidly in the high-energy
region. Three peaks are associated with the transition from
Si/C p to Nb d states. Photoconductivity is the increase in the
electrical conductivity of a material as a result of absorbing
photons [30]. For Nb4SiC3, there is photoconductivity when
the photon energy is equal to 0 eV. The reason is that Nb4SiC3

has no band gap. Therefore, photocurrent can be generated
within a wide range of photon energies. The energy-loss
spectrum describes the energy loss of a fast electron traversing
in the material [31]. Its peak is defined as the bulk plasma
frequency ωρ , which occurs where ε2 < 1 and ε1 reaches the
zero point [32, 33].

The reflectivity spectra of Nb4SiC3, Ti4AlN3 [12] and
TiN [34] are compared in figure 4. The spectrum of TiN shows
a sharp dip from 1.5 to 2.7 eV. Moreover, TiN has a goldlike
colour due to high reflectivity for red light and low reflectivity
for blue light [35]. Therefore, the reflectance spectrum of
TiN is selective. Compared with the reflectance spectrum
of TiN, that of Nb4SiC3 has no strong edge and colour and
does not greatly change at different wavelengths. Therefore,
the reflectance spectrum of Nb4SiC3 is nonselective and very
similar to that of Ti4AlN3. According to the nonselective
characteristic of the reflectance spectrum of Ti4AlN3, Li et al
[12] concluded that Ti4AlN3 could reduce solar heating and
enhance the infrared emittance, and therefore the equilibrium
temperature of its surface will be moderate in strong sunlight.
Based on the conclusion, Nb4SiC3 might also be used as

Figure 4. Reflectivity spectra of α-Nb4SiC3, Ti4AlN3 [12] and
TiN [34].

a coating to avoid solar heating. Moreover, Nb4SiC3 may
well be a better material to avoid solar heating because
the reflectance spectrum of Nb4SiC3 exhibits less change at
different wavelengths than that of Ti4AlN3. On the other hand,
we also find that the reflectivity of Nb4SiC3 is always higher
than that of Ti4AlN3. Therefore, the capability of Nb4SiC3 to
reflect solar light is stronger than Ti4AlN3.

4. Conclusions

In summary, a new layer compound Nb4SiC3 has been
predicted using the first-principles method. We investigated its
structural stability, mechanical properties, electronic structure,
theoretical hardness and optical properties. A stable Nb4SiC3

phase appears in the α-type crystal structure. The electronic
structures of Nb4SiC3 reveal that it is a metal and exhibits
covalent nature. Moreover, the C–Nb bonds possessed
stronger covalent bonding than the Si–Nb bonds. The strong
covalent bonding in Nb4SiC3 is responsible for its high
bulk modulus and hardness. The elastic constants, bulk
modulus, shear modulus and Young’s moduli of α-Nb4SiC3

are calculated. The results show that Nb4SiC3 is more ductile
and has a higher hardness than α-Nb4AlC3. α-Nb4SiC3 also
exhibits slight anisotropic elasticity. Finally, the dielectric
function, the absorption spectrum, the conductivity, the
energy-loss spectrum and reflectivity were obtained and
discussed in detail. It is shown that Nb4SiC3 might be a
better candidate material as a coating to avoid solar heating
than Ti4AlN3. We hope that the theoretical predictions will
inspire experimental investigation on Nb4SiC3.
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